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Computation of the Internal Forces in Cilia: Application to Ciliary Motion,
the Effects of Viscosity, and Cilia Interactions

Shay Gueron and Konstantin Levit-Gurevich
Department of Mathematics, Technion-Israel Institute of Technology, Haifa 32000, Israel

ABSTRACT This paper presents a simple and reasonable method for generating a phenomenological model of the internal
mechanism of cilia. The model uses a relatively small number of parameters whose values can be obtained by fitting to ciliary
beat shapes. Here, we use beat patterns observed in Paramecium. The forces that generate these beats are computed and
fit to a simple functional form called the “engine.” This engine is incorporated into a recently developed hydrodynamic model
that accounts for interactions between neighboring cilia and between the cilia and the surface from which they emerge. The
model results are compared to data on ciliary beat patterns of Paramecium obtained under conditions where the beats are
two-dimensional. Many essential features of the motion, including several properties that are not built in explicitly, are shown
to be captured. In particular, the model displays a realistic change in beat pattern and frequency in response to increased
viscosity and to the presence of neighboring cilia in configurations such as rows of cilia and two-dimensional arrays of cilia.
We found that when two adjacent model cilia start beating at different phases they become synchronized within several beat
periods, as observed in experiments where two flagella are brought into close proximity. Furthermore, examination of various
multiciliary configurations shows that an approximately antiplectic wave pattern evolves autonomously. This modeling
evidence supports earlier conjectures that metachronism may occur, at least partially, as a self-organized phenomenon due
to hydrodynamic interactions between neighboring cilia.

INTRODUCTION

This paper deals with modeling the internal forces thatbrane voltage and calcium levels affect the direction of the
produce ciliary motion, the changes of ciliary beats inmetachronal wave as well as the directions of the effective
response to changes in the viscosity of the surroundingnd the recovery strokes of the cilia. On the other hand,
fluid, and the investigation of cilia interactions. We are some researchers have speculated that metachronism may
particularly interested in the formation of metachronalresult from hydrodynamical coupling (e.g., Sleigh, 1974;
waves, phenomena which have attracted a great deal @heber and Priel, 1989). The work we present here provides
research effort both experimentally and theoretically. a theoretical model that partially supports this conjecture.
Metachronal coordination between cilia is a situation The motion of cilia and flagella is governed by the Stokes
where cilia beat together with a constant phase differencequations with no-slip boundary conditions on their surfaces
between adjacent neighbors and their tips form a movingnd vanishing fluid disturbance at infinity. The slenderness
wave pattern. Metachronal waves appear in various formsf cilia/flagella justifies certain asymptotic approximations
depending on the direction of the wave propagation. Symused to relate the local drag forces to the local velocity. This
plectic metachronism is the case where the wave propagategproach, which was pioneered by Gray and Hancock
in the direction of the effective stroke [for example, the ciIia(1955) (referred to as G-H hereafter), assumes that the
of Opalina(Sleigh, 1962)]. When the wave propagates in atangential, normal, and binormal components of the drag
direction opposite to that of the effective stroke, the metaforce are proportional to the respective components of the
chronism is called antiplectic. Diaplectic metachronism isyelocity, with different proportionality constants. The G-H
the case where the direction of the metachronal wave igpproximation has been used extensively in many models
perpendicular to the direction of the effective stroke. Inpecause of its simple implementation. However, it has se-
some cases cilia can change the type of their metachronisere |imitations [see, e.g., Lighthill (1975, 1976) and Chil-
in response to changes in the environment, such as changggkss (1981)]. Modifications of the drag coefficients, known
fluid viscosity, as observed with the cilia Barameciunby g resistive force theories (RFT), were tried as an attempt to
Machemer (1972). The reason why and how arrays of ciligyyercome these problems (Lighthill, 1975; Brennen and
beat in a metachronal pattern is not fully understood. ThﬁWinet, 1977; Johnson and Brokaw, 1979). Unfortunately,
work of Machemer (1972), for example, shows that mem-+ne RET was not accurate enough, for example in the case
of the flagellum with an attached cell body (Johnson and
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applicable for modeling multicilia configurations. A more and the similarity between the internal structure of cilia and
consistent method to relate the drag forces and the velocitffagella, Blum and Hines (1979) incorporated ciliary bound-
through a vectorial integral equation for the drag forces wasry conditions into a model for the motion of flagella. Using
suggested by Lighthill (1976) and proved by Childressa curvature-controlled model (Hines and Blum, 1978) and a
(1981). Lighthill's equation is an integral equation of the self-oscillatory model (Hines and Blum, 1979) they found
first kind with respect to its tangential component and isthat a 10um-long model cilium did not move at all with a
therefore ill-posed. In addition, its integrand is singular andflagellar engine, while a longer model cilium moved with a
the integration interval contains points that are close to thgymmetric beat pattern similar to flagella. Thus, they could
singularity. This introduces severe problems in any attempfot obtain a ciliary beat pattern by simply changing the
at a numerical solution. Other hydrodynamic analyses, gemoundary conditions in a flagellar motion model. Obvi-
erally referred to as slender body theory, have been devepysly, some other factors are responsible for the asymmetric
oped and refined by many authors. They were applied t¢atterns.

various problems involving flagellar motion, offering dif- ~ Excitable dynein models for the internal engine of cilia
ferent methods to relate between the drag forces and thgng flagella were suggested in a series of papers by Murase
velocities (Johnson and Brokaw, 1979; Dresdner et al.gng Shimizu (1986), Murase et al. (1989), and Murase
1980; Higdon, 1979a—c; Phan-Thien et al., 1987; Myer-1990, 1991). These models assumed that dynein is nor-
scough and Swan, 1989; Ramia, 1991). In a recent publigmga|ly at a resting position and is activated when the sliding
cation, Gueron and Liron (1992) (GL hereafter) presented @y ceeds some threshold value. These models were tested
method that overcomes the above difficulties. They intro-omy under the assumption of small amplitude motion,
duced a variation on Lighthill's equation that yields a well- |\ 1:-1 is not the case for real cilia, and were based on the
posed integral equation of the second kind for the normals_, approximation that is not adequate for modeling mul-

tangential, and binormal drag forces, thus keeping the inteﬁcilia configurations. Also, we found that Murase’s model

gration interval away f'rom the singularity. Th|s.|.mprove.3d engine (Murase, 1990) gives poor results when incorporated
the accuracy and consistency of the model for cilia beatmgi.nto the GL model

More important, the GL equations are the first published In the present study we propose a consistent method for

method for dynamical simulations of.mult|c'|I|a qqnflgura calculating the internal forces that generate an observed
tions that account for the effects of neighboring cilia and the_. . . . . .

! " ._ciliary motion. To avoid the need for a detailed analysis of
effect of the surface from which the cilia emerge. This

- . . : the internal filaments, the dynein arms, radial spokes sys-
model was originally applied to a two-dimensional setup .
. . . . tem, and microtubules (see Brokaw, 1985), we model the
and later extended to describe three-dimensional beati

ng . ; .

. omputed forces by a simple and plausible functional form.

(Gueron.and L|rpn, 1993). . o The rr)esulting engir?/e reprepsents mperely a phenomenological
Modeling the internal mechanism of cilia is a very chal-

lenging problem, and no satisfactory model has been devegescription. To obtain realistic values for the relatively

oped so far. We review here briefly some of the previoussmall nhumber of parameters on which our model depends,

modeling attempts, discussing the involved difficulties. W€ US€ data from observed cilia and compute locations and
The work of GL was mainly oriented toward developing veIOC|.t|es during the beat cycle. We then solve the GL
a framework that facilitates dynamical modeling of multi- €duations and compute the drag forces, from which we
cilia configurations. To describe the internal mechanism ofcOMPUte the internal shear forces. These forces are used to
the cilia (hereafter referred to as the “engine”) phenomenogeterm'ne the engine parameters. The transitions from the
logically, they used an ad-hoc equation that represented ireffective to _the recovery stroke and vice versa are modeled
active normal shear force generated inside a cilium. The GIPY two switches that are controlled by the momentary
engine included a built-in frequency term that controlled thedometrical configuration. These configuration-dependent
resulting beat frequency and predetermined the duration gwitches implicitly reflect the load dependence of the inter-
the effective and the recovery strokes. Therefore, this moddlal engine without using an explicit frequency term in the
engine does not allow for realistic changes in the beafhodel engine.
frequency in response to changed external load such as The new engine is tested by incorporating it into the GL
increased viscosity or external flow generated by neighbordynamical equations for two-dimensional beats. The model
ing cilia. This is also the reason why it is not appropriate forproduces realistic beats. It also reproduces experimental
investigating metachronism. In the GL modeling frameworkresults such as logarithmic decrease in beat frequency with
the engine part is kept as a separate building block, whiclncreased viscosity, self-synchronization between two adja-
can be readily replaced by a more realistic version, as weent cilia, and frequency matching with the frequency of
demonstrate in this paper. external flows. Finally, we investigate multicilia configura-
Experiments show that when flagella are pinned at ondions and obtain dynamic self-synchronization between two
end to a flat surface they tend to change their beat patteradjacent cilia, and phase lags that resemble antiplectic meta-
from a symmetric cycle (which is typical for flagella) to an chronal patterns that evolve autonomously due to the hy-
asymmetric beat pattern similar to that of cilia [see, fordrodynamical interaction between the cilia. A brief sum-
example, Blum and Hines (1979)]. Inspired by these resultenary of a portion of this work, without any of the
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mathematical and computational details, is presented by +V4i(r(so, 1), 1(s, t), —(@74n) ¢(s, t)}ds
Gueron et al. (1997).

THE MODEL EQUATION OF MOTION neighboring cilia

Notations (4)
We adopt the notations used by GL and by Hines and Blum 8 8mu

(1978). The cilium is considered as an inextensible cylin- C = 2+ 4In2qa)’ Cy= 1+ 2InC2q/a) (5)

drical filament of length. and radiusa, whose centerline is

a curve parameterized by its arclength parametersO= L.  Hereq can take any value such thgit. << 1, a/q << 1. The

For the two-dimensional motion, the location of each pointterms that appear as integrands in Eq. 4 are the appropriate

[X(s 1), y(s, 1)] along the cilium, at timg, is determined by  singular solutions of the Stokes equation (stokeslets and

the anglen(s, t) between the tangent to the curve and a fixeddoublets with and without the image system). Equation 4 is

horizontal axis by the equations an approximation to orde®(Vall). It can generally be
used for 3-d motion, but is applied here to planar motions

s (for more details see GL).
X(s 1) = | coda(§ t)]dé, The balance of forces and moments and the equations that
0 relate the components of the velocity to the cilium’s geom-
@ etry (see Lubliner, 1973; Hines and Blum, 1978) are
ys t) = f sinfa(¢, t)]dé. dn = Fn, + Fras, &r = Fr,— Fyas, Ms=Fy,  (6)
0
VN, = oy — Vras, Vi, = as. (1)

The curvaturecx = k(s, t) satisfiesk = a,. We user(s, t) to
denote the shear force developed by the internal mechanis
of the cilium andM (s, t) for the bending moment it pro-
d_upesd>(s, t) is the drag. force per un_|t Iength, exerted on the Fy= B+ S 8)
cilium by the surrounding fluid of viscosity.

The subscripts T and N denote the tangential and normalhe first term of Eq. 8 accounts for the elastic stiffness of
components of vectors, respectively, and the subscripts the cilium and the second term represents the internal en-
and t denote partial differentiation with respect to the arc-gine; that is, the active shear force generated inside the
lengths and to timet, respectively. In general, all locations cilium by the sliding filaments mechanism.
and forces depend onand s, but we avoid writing this Using Egs. 2, 6, and 7 and the normalized variabtes
dependence explicitly whenever it is clear from the contexts/L, t* = wgt, S* = S, we obtain the following nondi-

mensional equations (written without the asterisks for con-

=N the normal component of the shear force developed
within the cilium, is represented by

venience):
Drag force-velocity relation and 5
geometric equations Fr.= (1 + Cry)Fnas + CryFray) ©
The hydrodynamic description of cilia motion we use in this + Fnass — CrnOnas + Or.s
work was developed by GL. The drag force-velocity rela-
tion is written as Fre T (1 + Cyp)Fras + Fras 10)
by = —C\Wn + Ons &1 = —CiVy + gr. (2) = —(CWoL/S)a; + CyrFn(ag)® + CyrGras + O,
where whereCry = C;/Cy andCy; = C\/C;, and 0= s= 1. For
brevity we defineCy = C\L%S,. The values oL, &, and
ov = C\Gn, O = C;Gr, (3) W, are displayed in Table 1. The nondimensional form of
Eq. 8 becomes
andG = (G, G) is defined by
E
Fx Z@'OLSS-F S (11
s> The motion of the cilium can be computed from EQs.

9-11. If a model forS(s, t) is chosen, one can compufg

from Eq. 11. ThenF; is determined from Eq. 9 ang(s, t)
+J {Vilr(s, 1), 1(s, 1), — (s, 1)) can be propagated in time by means of Eq. 10. Fig. 1
O=s=L represents the simulation algorithm for the numerical tech-
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TABLE 1 Parameter values for the ciliary motion model

Parameter Value Reference
L 12 wm The length of the cilium oParamecium(Sleigh, 1962)
a 0.1 wm Typical cilia radius (Sleigh, 1962)
q 1pm Gueron and Liron, 1992
Wo 28 beats/s Typical beat frequency Réramecium(Sleigh, 1962)
S 102N Gueron and Liron, 1992
E, 25-10 24 N/m? Gueron and Liron, 1992
I 0.001 kg/(m- s) The viscosity of water (at 20°C) (Gueron and Liron, 1992)

‘ INPUT: The cilium shape a(s,t) at time £. l Using Eq. 11 a5 =0 and Eq. 13, we obtain

’ 0= g0t 14
REPEAT: assd0, 1) = E S(0,1). (14)
[Coletate Ste,t+ ) initiel gues is the value t time ) | Forces and moments vanishsat 1, and hence
!
Fn(1,t) = Fr(1,0) = 0, (15)
‘ Fry(s,t+ %) = By - (s, b+ 9) + S(s, t + &)

! which yields
REPEAT: 14 S)LZ L 16
Solve Eq. (9) for Fr(s,t+ %) aSS( ’ ) - ?b g ) ) ( )

(initial guess for (gr, gn) is the value at time ¢)

To complete the choice of the boundary conditions we
) choose

$r(s,t+2) = Frs,t + %) — Fy(s,t+ %) au(s,t + §) afl,t) =0, (17)
ol t+9) = Fr(s,t + 9) ouls, -+ ) + Fa (5,0 + 9)

which implies that the distal end of the cilium is straight.

v We use the initial conditions
Solve Eq. (4) for gr(s,t + %) and gn(s,t+ %)
B : ‘ T
UNTIL STOPPING CRITERION FOR (g7, gv) IS MET. als, 0) = 5 (18)
1

implying that the cilium stands erect at time= 0.

Solve Eq. (10) for a(s, 1 + &)
UNTIL STOPPING CRITERION FOR « IS MET.

Il RECONSTRUCTION OF THE ACTIVE SHEAR
‘ OUTPUT: afs, i +dt) = 2 als,t + %) — afs, ) ] FORCE FROM DATA

In this section we describe a general framework for com-
FIGURE 1 A schematic representation of the simulation algorithm. puting and mode"ng the active shear force (engine) gener-
ated by the internal mechanism of the cilia and demonstrate
its implementation with specific data. We separate the beat

niques used in the simulations and the complete detail§YC!€ into four .distinct phgses that occur in the 'f.ollowing
schematically outlined in the Appendix. order. Ehase 1: The effgctlve stroke where the cilium peats
approximately as a straight rod. Phase 2: A geometrically

controlled switch from the effective to the recovery stroke,

Boundary and initial conditions initiating a change in the direction of the motion and a bend

. . - at the basal end. Phase 3: The recovery stroke where the
Here we use boundary conditions appropriate for cilia thapang propagates along the cilium until it becomes straight

are stiff at the base (Blum and Hines, 1979; Murase, 1992),44in pPhase 4: A second geometrically controlled switch

namely from the recovery to the effective stroke, initiating a new
effective stroke.

(0,9 =0. (12) We thus construct two different simple models for the

We assume here vanishing drag forcesat= 0 as an forward (effective) and backward (recovery) motions,
approximation motivated by the small amplitude motionwhere the transitions from one to the other occur due to
nears = 0: switches (see Satir, 1985) activated by the momentary geo-

metric configuration of the cilium. The rationale for using

Fr(0,t) = Fy(0,1) = 0. (13)  two different models is that observations show completely
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different behavior during the effective and recovery strokesThe effective stroke

and there is some evidence that these phases are related to . the effecti troke the cil imatel
different connections among the nine filaments (Sleigh anoDu”ngtr ie k?t rec(:jl\ﬁ;]ro ﬁ Ie ;:|V|u|m riTt]O\i/ez arg)ptromma €y
Barlow, 1982; Satir, 1985). Conﬁguration—dependentas a straignt rod. € anguiar veloclly 1S enotecy,

switches are a reasonable modeling assumption that attemtpr)}e tangential and the normal components of the velocity are

to reflect the load dependence of the internal engine. These Vi=0, Vy= —aus, (20)
are motivated by the fact that observed beat frequencies T b of
change in response to external load. and the drag-velocity equations (Eq. 2) reduce to:

The exact details of the motion of a single cilium are
difficult to separate since experiments always describe the dn = CneerS + O, (21)
motion of an ensemble of cilia. Therefore, it is difficult to
determine whether the modeling principles we propose b= gr. (22)
here, or their implementation, apply in general. In the
present study we consider cilia that beat in a two-dimen-Substituting Eq. 21 into Eq. 6, and usiag = 0, yields
sional pattern for which both the effective and the recovery
strokes occur at a plane perpendicular to the surface from Fu. = CnoerS + . (23)
which the cilia emerge. For data we use the cilium of
Paramecium whose beat pattern is close to being two- The distal end of the cilium is free, and thus the shear forces
dimensional (Sleigh, 1962). We use these observed beghnish ats = 1. We integrate Eq. 23 with respect s@nd
patterns to compute locations and velocities at various timesbtain
during the beat cycle. Then we calculate the forces that are
responsible for the observed motion and fit to a simple _ (-1
functional form that represents the model engine. We do not Fr(s, D) = Cuwer——— + (s, b)), (24)
attempt to account here for the specific details of how these
forces are generated and controlled by internal structure offhere
the cilium. Nevertheless, it is known that the internal shear
forces arise from the dynein cross-bridges and from the 1
radial spokes and nexin links systems (Sleigh and Barlow, f(s, a(t)) = —J on(é, Hdé. (25)
1982). It is thus convenient to follow Hines and Blum s
(1978) and to consider these two systems separately, and to

write Since the cilium is straight, the elastic forces vanish and Eq.
11 gives:
S t) = (s t) + S(s ), 19
S50 =S(s 0+ S (19) Se = Fya D
whereS; andS represent the shear forces due to the dynein ~ (£ -1 (26)
cross-bridges and to the radial spokes/nexin links systems, = CNweff'T + (s, a(t).
respectively.

The implementation of our proposed modeling approach 1q compute the active shear forcs, t), we solve the
to a specific case is based on the available data on th@tegral equations (Eq. 2) faby and -, and then solve Eq.
observed beats. While the forces that generate the motiog for F,, andF.
are quite accurately reconstructed, there are more than onerjg. 2 a displays the calculated active shear forgefor
option to model their control, in particular how the model giferent positions during the effective stroke, and panel
engine responds to external load. Our modeling assumptiogisplaysf[s, «(t)], which is calculated at these inclination
is that the load dependence is reflected only through th@ngles. As shown in pankithe computed functiofis, a(t)]
geometric switches; that is, the internal mechanism does n@jehaves roughly likeC - [($* — 1)/2], with an angle-
change its properties due to load. A different approach thafiependent constar@ = C[«(t)]. Note that if we use the
would produce a different, perhaps even more realistiGz-H approximation instead of the more accurate GL hydro-
model of the internal ciliary mechanism would be to inC|Udedynamics, the active shear force turns out to be angle-
the property that dyneins generate more forces when slowe@idependent, which gives a less realistic description of the
down by load. This would actually replace our configura-engine. We model the functidifs, a(t)] by
tion-dependent engine with a speed-dependent one. Without
actual quantitative data, this approach must involve another _ (-1
modeling assumption. One example is Brokaw (1985) who f(s, a(t)) = Cower - hlal(t)) - 2
included this property without going into details of the
internal structure. His approach can also be explored withitwhereh(«) represents the angle dependence. From the ex-
our modeling framework. pression forgy it follows that f(s, «) is symmetric about

(27)
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0=300  —

S(s.8)

(c)

FIGURE 2 @) The computed active shear for€during the effective
stroke, for different values of the inclination angle (b) The function

f[s, a(t)] = —fIgy(& t)dé computed during the effective stroke for the
same values ofx as in @) (see explanation in the text)c)(h(a) as a
function of « during the effective stroke. The solid line represents calcu-
lation results, the dashed line is the fitted cuhfe) = A, + A, - (o —
@/2)? (with A; = 0.26 andA, = —0.17). The units of the horizontal and the
vertical axes ing) and @) are nondimensional length and nondimensional
force, respectively. The horizontal axis ig) (measures the inclination
anglea in radians.

a = /2, and we thus fih(«) by

h(a) = Ay + Ay (a - 727) . (28)

Fig. 2 ¢ shows the graph ofi(«) versusa, as obtained

Finally, the shear force during the effective stroke is
modeled by

_ ($-1) m\2
S=CNweﬁ'2-[1+A1+A2-<oz—2) ] (29)

Note thatC, and w.y; appear only as the combination
Crwer- We use the two parameters separately in order to
leave a frequency termw() and for consistency with the
GL equations. The values we use fog; andC, are based

on the data, as detailed in the next section.

According to Sleigh and Barlow (1982) the radial spokes
are attached to the central complex along the bent region but
are not connected along the straight regions. Since during
the effective stroke the cilium is almost straight, the contri-
bution from the radial spokes syste® () may be ignored.
Thus, active shear force during the effective straBg)(is
modeled by

_ (-1
Sk = Sieff + Seff = Cwer * T : [1 + h(a)] (30)

The recovery stroke

Data handling for computing the velocities during the
recovery stroke

Calculation of the active shear force during the recovery
stroke is more complicated than during the effective stroke
because the angular velocity of the cilium varies vétio
determine the velocities during the recovery stroke, we use
the beat cycle diagrams shown by Sleigh (1962, 1968) as
data. We fixN points, equally spaced ks = 1/N arclength
apart, along the cilium at all positions during the observed
recovery stroke, and measute= x(s,t) andy = y(s, t) at
these grid points. The number of positions, separated by
fixed time intervaldt, isK + 1. We end up withK + 1 sets

of coordinates (ids, jdt), y(ids, jdt)] = (x?, y9),0=i =

N, 0 = j = K. To suppress measurement errors we smooth
the manually measured data anddifs) by the sigmoidal
function A/[1 + exp®B - s — C)] + D as shown in Fig. d.

The reconstructed recovery stroke is displayed in Fig. 3
Finally, the &, y)-components of the velocity at these points
are approximated by a central difference.

Blake (1972) and Liron and Mochon (1976) tackled a
similar reconstruction problem. They used Fourier time
series for describing the coordinates of the moving cilium,
computing the coefficients from the observed data. Since
our typical data represent a relatively small number of
positions during the beat, only a few terms can be included
in such Fourier series, and then the related derivatives
would not approximate the cilium’s velocity well. We there-
fore prefer the central difference approximation, described
above.

from these calculations, and the fitted function defined by . .
o Calculation of the active shear force
Eq. 28.A, andA, are computed by a minimum least-squares

fit, which yieldsA, = 0.26 andA, = —0.17. Evidently, this
simple procedure produces a relatively good fit.

Using the fitted velocity we solve the integral equations (Eq.
2) for the drag force# and¢y. Equation 6 are then solved
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FIGURE 3 @) Five positions during the recovery stroke, reconstructed from the diagrams of the beat cyraeaofecium[Sleigh (1962); (see
explanation in the text)].k) The curvaturex as function ofs at the five positions during the recovery stroke. The diamond symbols shown with one of
the curves display the measured values for corresponding time step. The curves are results of smoothing by sigmoidal functions (see expeeatjon in th
(c) The calculated shear force along the cilium at three times during the recovery stfokga¢ function ofs during the recovery stroke at the same time
positions as ind). The units of the horizontal axis iraf—(d) are nondimensional length. The units of the vertical axis ayem@¢ndimensional length; in

(b) radians; €) nondimensional force,dj dimensionless curvature.

for Fy andF+, and the active shear force generated inside Similarly to the effective stroke case, we model the forces

the cilium (S) is obtained from Eq. 11. due to the dynein cross-bridges; () by a parabolic function:
Fig. 3 c displays the calculated shear force as a function 1-9
of sat different time steps during the recovery stroke. These S.(st) = CNmrec'T' [1+ heda)], (32)

are the same time steps as in pathethere the curvature of

the cilium is plotted. The peak observed in these curves caghere wec IS the typical velocity of the recovery stroke
be interpreted by the following argument: when the bend ise g . the velocity of bend propagation along the cilium) and
ats = s, the region 0= s = §, has already reached its p_ (o) is a function of the form (Eq. 28). Sleigh and Barlow
leftmost, almost straight, position (see Figa)j3 Therefore,  (1982) reported that the dynein cross-bridges work synchro-
the force required to maintain it fixed is approximately noysly along the cilium during the effective stroke. They
constant. A stronger force is required to overcome theyssumed that at the beginning of the recovery stroke the
elastic bending resistance near the regior s, and 10 dynein arms work only at the basal region, thus initiating the
propagate the bend toward the distal end of the cilium.  pend. We adopt this assumption and model the dynein arms

Recall that we construct the engine as the sum of thectivity by using the following form foh,.s, t):
forces due to the dynein cross-bridges and to the radial p

spokes/nexins (see Eqg. 19). A reasonable and straightfor-
ward indicator of the location of the bend is the curvature of
the cilium. Indeed, the peak of the active shear force ob-

71_2
1+A1+A2'(a(0,t) _2> y

0=s=0.1 and «0,t) <a

tained by our calculations is located at the place of maxima}1 (s1) = (33)
curvature of the cilium (compare panesndd of Fig. 3). ee m\?
Thus, we model the contribution of the radial spokes to the At Ao (a(o’ - 2) '
active shear force§ ) by a simple function of the curva-
ture, namely \ 0.1<s=1 or o0t >
S8 1) = Brecr (s, 1), (31) Here,a is the inclination angle of the cilium at its leftmost

position, just before the beginning of the effective stroke.
whereB, .. iS a parameter to be computed by fit to the data.The values ofA; andA, are determined by fit to data.
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Summary of the engine equations NUMERICAL METHODS AND THE

We now assemble Egs. 28, 30, 31, 32, and 33, and use th%HOICE OF PARAMETERS

fact that the curvature vanishes during the effective strokeThe parameters we use in the model are listed in Table 1.
which implies that no forces arise from the radial spokesWith these parameter values the modified resistance coef-
system §_ = 0), to write the resulting expression for the ficients for cilia beating in water are:

active shear force:

&ﬁ/rec = SS: t)

k k
Cr= 0.00251757g , Cy=0.003594 77g .
m-s m-S

B (£-1) Note that the values of these coefficients are different from
=(*1)- {CNweff/rec'z‘[l + NemredS, D] (34)  the values used with the G-H model. Particularly, the ratio
C\/C+ is 1.43, which is much lower than the value of 2 used
in the G-H model and also lower than the value of 1.8
+ Befirrec” K(S, t)}, measured (roughly) for a flagellum by Brokaw (1972).
For modeling the active shear force function we use the
where the function$«(s, t) andh,.{s, t) are described by following nondimensional parameters:
Egs. 28 and 33 for the effective and recovery strokes,
respectively.wp,ec are the typical velocities during the — werr = 393  the average angular velocity of the cilium

effective and recovery strokes, respectiveBgg,e. is a of Parameciumduring the effective stroke

parameter controlling the relative magnitude of the contri- (expressed in nondimensional units, and

bution of the radial spokes to the active shear force during equivalent to 11000 °/s). Sleigh (1962).

the effective and recovery strokes. The signS(é t) is wec = 82 the average velocity of bend propagation

taken positive during the effective stroke and negative dur- during the recovery stroke (expressed in

ing the recovery stroke. nondimensional units, and equivalent to
Altogether five parameters control the effective stroke 2292 °Is). Sleigh (1962).

[wesrs @Ry Besrn @and set £, A,)] and five parametersa,oo
o, B,oo and setA,, A))] control the recovery strokes,;,  1he pargmeters defining the functidm(s) as in Egs. 28 and
Weo O, anda, are measured directly from the data and33 are fit to the data:
Bt Breo @nd the two setsy;, A,) are obtained by fit to this

) . A A A
f[j_ata. The choice of parameters is detailed in the next sec- during the effective stroke 0.26— 0.17
on. during the recovery stroke 1 —2
The parameterB, .. (S€€ Eq. 34) are:
Switching

.. . - Beff:Ov Brec:2-
To complete the description of the engine it is necessary to

determine when the switching between the two phases of We used finite difference schemes and iterative tech-
the beat occurs. Ié(s) denotes the effective shear (i.e., the niques to solve the differential and integral equations. The
effective amount of sliding), then the inextensibility of the time step for the numerical schemes vaas= 0.1 ms (0.28

filaments implies in nondimensional time). The nondimensional spatial step is
ds= 1/30 (i.e., 31 discretization points on each cilium). We
a(s) = o(s) + [a(0) — o(0)] (35)  verified that the results do not change significantly if the

. . i _ number of the discretization points is increased or if the
[note that the effective shear is a geometric quantity, not Qime step is decreased

b? confused with the active shear force. For details see To facilitate the reproduction of our method, the details of
H'r?es_a”d Blum (1978)]. In ou_r_mo_del We assume _thatall the computational procedures used in the numerical
switching ogqurs_when further_ slld_|ng is no Ion_ger possible, . 1ations are outlined in the Appendix.

and then sliding in the opposite direction begins. Thus, the

maximal effective displacements) is achieved at the

switching moment. This leftmost (or rightmost) position, RESULTS

corresponds, according to Eqg. 35, to an inclination angl
denotedy, (ag). Consequently, switching between the ef-
fective and the recovery strokes occurs when the ciliunfig. 4 a displays the beat cycle of a model cilium with the
reaches its rightmost inclination. During the recovery strokeengine described by Eq. 34 and the parameter values de-
the cilium straightens until it reaches its leftmost earlyscribed in the previous section. The beat duration (translated
straight position. In our model, switching between the re-back to dimensional units) iss34 ms, corresponding to a
covery and the effective strokes occurs whiglh, < € (we  beat frequencyv ~ 29 Hz. For comparison, the beat dura-
usede = 10 ). tion and frequency of the cilia dParameciumwhich we

Results for a single cilium
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FIGURE 4 Beat cycles of model cilia. All positions are equally separated in time by 3 ms. The effective stroke positions are plotted by dashed lines and
the recovery stroke positions by solid lines. The units of the axes are nondimensional lephgttsirfgle cilium. The viscosity of the surrounding fluid

is that of water 1 = w0 The resulting beat frequency 4629 Hz. ©) u = 2u,,4er The resulting beat frequency 415 Hz and the beat pattern is
changed.) n = 3u,aer The resulting beat frequency4s10 Hz and the beat pattern is further changejiSide view of an infinite line of synchronized

cilia, spaced by 0.3 ciliary length, beating in water. The resulting beat frequere3ddiz. Note the different angular spread during the beat as compared

to the single cilium in §).

used as data for the modeling process, are 35 msaand  region remains at its leftmost position fer75% of the beat
28 Hz, respectively (see Sleigh, 1962, 1968). The duratiomycle. The angular range of the effective stroke=i$10°—
of the effective and the recovery strokes of the model cilium115° for both the real and the model cilium. These features
are~8-9 ms and=25-26 ms, respectively. The duration of of the model beat cycle fit the data very well, although the
the effective stroke is approximately one-third of the dura-actual beat pattern of the model cilium (Fig.a¥#is a bit
tion of the recovery stroke for both the real and the modebifferent from that of the observed cilium (Fig.&8. This
cilium. difference is probably the result of the fit approximations,
During the recovery stroke, the basal regionl0% of  numerical and measurement errors, and the uncertainty of
the cilium) moves quickly from its rightmost position (the what happens at the beginning of recovery stroke. In addi-
position of the beginning of the recovery stroke) to itstion, the observed cilium presented by Sleigh (1962) is one
leftmost position (the position of the beginning of the ef- cilium within a multicilia configuration, and therefore the
fective stroke) and remains there until the cilium straightensnteraction between an unknown number of neighboring
(see Sleigh, 1962, 1968). This also happens with the modadlilia is already included in the data. Nevertheless, the model
cilium. Note also that a realistic forward bend in the cilium beat cycle possesses the typical features of the beat. Table 2
is formed during the effective stroke, although originally thecompares some properties of the cilium B&ramecium
cilium was considered as a straight rod during this phasewith those obtained from the model, demonstrating a good
The autonomous formation of this bend is due to the fitfit to the data.
approximation used when modeling (and additionally
because after a few cycles, the cilium does not start it
effective stroke from a perfectly straight position). We point
out that if the boundary condition 0, t) = 0 (for a cilium  Machemer (1972) investigated the effects of increased vis-
stiff at the base) is replaced wiita(0,t) = /2 (for con-  cosity on the cilia oParameciumparticularly the effects on
stantly erect cilium at the anchor), the bend formed duringhe beat frequency. He reported that beat frequency de-
the effective stroke is in the opposite direction, unlike creases exponentially with increasing viscosity.
observed beats. The duration of the swing of the basal Fig. 4,a—cdisplays the beat patterns of the model cilium
region during the recovery stroke 488 ms, and the basal at three different viscosities. With increased external load

The effects of increased viscosity



Gueron and Levit-Gurevich Internal Forces in Cilia: Ciliary Motion and Interactions 1667

TABLE 2 Comparison between the properties of model motion. We also mention that the case of an isolated cilium

beats and observed ciliary beats of Paramecium we discuss here is a hypothetical one. In reality there are

Data always neighboring cilia, and the beat frequency is also

Parameter Dimensions  (Sleigh, 1962) Model  affected by the external flow that is induced by the neigh-

Beat duration ms 35.7 ~34 boring cilia. Machemer’'s observations were made with a
Beat frequency cycles/s 28 ~29.5 real multicilia configuration (not specified). This can ex-

Angular range of the degrees 110 110-115  plain the difference between the slope of the model results

effective stroke
Duration of the ms ~9 ~8
effective stroke

and the real data. However, note that the beat frequency of
the model cilia tends to approach that of the real data as we

Duration of the ms ~26 ~26 simulate a row of several adjacent cilia.
recovery stroke Machemer investigated the behavior of cilia when the
Ratio of durations 2.9 325  fluid viscosity was increased by as much as 40 times that of
(recovery/effective)

water. He found that with increased viscosity (above 5

Duration of the basal ms 6 ~7 . . .
swing during the Mwated Parameciuncthanges the plane of beating. Since our
recovery stroke model does not include this possibility, we examined the
effects of increased viscosity only in the rangg,l.., 5
Pwated-

We also examined the effects of changed viscosity on the

effective and the recovery strokes changes only slightly .. : .
(roughly 1:3). This reflects the fact that our model engine(:lllum (see Table 3), but at each viscosity the beat frequency

o f the cilia in the infinite line of cilia w mewhat higher
does not change with increased load. We conclude th g the cilia in the te line of cilla was somewhat highe

. . oac. han the frequency of a single cilium at that viscosity.
during the effective stroke the engine is strong enough t@ an the frequency of a single cilium at that viscosity

overcome viscous resistance in this range, but with in-

creased external load it becomes more difficult to propagat®he effect of external flows
the bend along the cilium. Fig. 5 compares the dependen :
f e beatrequency on vscosy of e mocel i win [0 U1 eXetin e aad dependence of he nocel en
Machemer’s data (Machemer, 1972). The model beat fred

quency decreases roughly linearly when plotted against the'd beat frequency. We used a parallel flow satisfying

logarithm of the viscosity in the regiop.., = w = 5 no-slip conditions on the surface, and with linearly growing

Mwater @S reported by Machemer. This feature wast amplitude: ¥y, Vy) = (Ko -y, 0), whereK, is a constant

explicitly assumed in the model and thus demonstrates th E 3:§blé/otrlrr2§-%en%2ntge; 2&%92(1'2 e:]‘zovr\‘lﬁlhf![ﬁ\g O:er::r?tm-
our model captures this important property of the ciliary 0 P ' 0 b

choice of parameters. Three different cases were tested: 1)
flow in the direction of the effective stroke; 2) flow in the
direction of the recovery stroke; 3) periodic flow.

45 ¢ T T T T . . .

Fig. 6, a—c displays the ciliary beat cycles when the
O 1  external flow is in the direction of the effective stroke.
3B L

IncreasingK, shortens the effective stroke and the whole
o beat pattern (stopping positions, angular range, duration of
'''''''''''''''''''' the effective and recovery strokes) changes. During the
recovery stroke the cilium experiences stronger resistance
due to the external flow, and the resulting recovery stroke
takes longer. As the flow in this direction becomes stronger,

30 £

25 F
20

15

beat frequency (Hz)

10

5

L L L § TABLE 3 The combined effect of cilia interactions and
5

1 (water) 2 3 4 : : :
viscosity (multiples of the viscosity of water) increased viscosity

Single Two Cilia Five Cilia One

FIGURE 5 Dependence of beat frequency on viscosity in the rangeViscosity —Cilium  Configuration  Configuration Infinite Line
Powater= K = Swater Dlgmondg §>), triangles (A), anq asten;l'@ko are the oer 29 Hz 31 Hz 33 Hz 32 Hz
modeling results for a single cilium and for five adjacent cilia separated by

- . . - . 2ater 17 Hz 19 Hz 20 Hz 20 Hz
0.6 and 0.3 ciliary length, respectively, with the errors indicated as vertical 12 Hz 13 Hz 13 Hz 14 Hz
bars. The lines (— —,- - - -, and — — —) are the least-squares linear fit to the Hwater
computed values. The uppermost line (— -—) shows the fit (in the ~ Comparison of the beat frequency for three different values of viscosity

rangetyaer = 1 = Suyaed t0 the experimental result§l) obtained for ~ and for four configurations. The spacing between adjacent cilia is 0.6 in all
Parameciunby Machemer (1972). The abscissa is on a logarithmic scale multicilia configurations.
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FIGURE 6 Beat cycles of a single cilium showing the effects of external flows. All positions are equally separated in time bg)3(o)shé external

flow is in the direction of the effective strokeV(, V,) = (K, -y, 0), whereK, = 1, 2, 3, respectively.d)—(f) the external flow is in the direction of the
recovery stroke\(,, V,) = (K, y, 0), whereK, = —1, —2, —3, respectively. The units of the horizontal and vertical axes are nondimensional cilium length.
Beat patterns, angular spread, and beat frequency change due to the external flow.

one can see that the resistance changes the final position faéquency to that of a nearby vibrating microneedle, and

the end of the recovery stroke. also with the results of similar experiments by Eshel and
Fig. 6 d—f displays the ciliary beat cycles when the Gibbons (1989) on sea urchin sperm flagella.

external flow is in the direction of the recovery stroke. Such

flow poses more resistance to the cilium during its effective

stroke. The duration of the effective stroke lengthens with

increased flow amplitude, and the beat pattern changedABLE 4 The effect of external flow on beat frequency

Table 4 summarizes some of the results obtained with these Eff. Stroke
flows Velocity Beat Duration Beat Frequency Duration
) o Vo Vy)* beats/

The periodic external flow tested wasV(V,) = Mo V) (ms) (beats/s) (ms)
[Ksin(2mwi)y, 0] in the range 0, = w = 2w, (thatis (Y. 0) 34.5 29 6
from half the frequency of a beating cilium to twice that gi 8; 22'5 53 2'5
frequency), and for = KO_ = 15. We f_ound that the beat (_1,'y, 0) 37 27 8
frequency of the model cilium approximates the frequency-2 -y, o) 42 24 9
of the external flow. This is consistent with the experimental(=3 -y, 0) 40 25 11

evidence rEportEd_ by Okuno and Hiramoto _(1976)1_ WhO+positive and negativ,, components represent flows in the direction of
reported that starfish sperm flagella synchronize their beate effective and the recovery strokes, respectively.
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Two-cilia configuration Our model, on the other hand, does not make any assump-

tions on the relation between the intrinsic beat pattern of the

Our model results indicate that when two cilia are spaced b¥wo cilia and the pattern that emerges when they are close

more than two cilia lengths, their influence on each Othertogether and subjected to the effects of their interaction. It

becom_es negligible. Fig. 7 shows (on gilogant.hmlc .Scale%dso includes realistic interaction, and we obtain synchroni-
the ratio of the beat frequency of a two-cilia configuration tozation as alynamicalprocess evolving quickly and auton-

that of a single cilium as a function of the distance betweerbmously from two cilia, initially completely out of phase. A

the two cilia. We see that cilia that beat close to each otheg | .\ 1 analogous phenomenon of self-synchronization

tend to beat faster. For example, if the distance between the . phase locking between rings and lines of coupled os-

cilia decreases from 2 to 0.3, the beat frequency rises frOr&llators is well known, and was investigated experimentally

:hzg :Z (;hg ll).eat frecI]:l.Jen(;y.oftarl]S|TgletC|I|um)¢0¢Of.thz_ th and theoretically [e.g., for one-dimensional weakly coupled
€ dashe B i€ in Fg. /1S he least-squares Tt 10 & »ing and rings of oscillators, by Ermentrout and Kopell
functionA - x=, and the extrapolation of this fitted line back

1984 E 1 .H h I
to the distance 0.02 predicts a beat frequency=68 Hz. (1984) and Ermentrout (1985)]. Here we have a complex

. X o biological system demonstrating some predictions of this
Since the radius of our model ciliadgs= 0.01 (see Table 1) ¢ 4 g P

this dist ts two touchi ilia. To test th theory. The evolution of self-synchronization of two model
IS distance represents two touching cilia. 10 test the Prég;;n ypat are spaced one cilium length apart and start beating
diction, we modeled a (very) roughly equivalent isolated

- ; - . . ~“completely out of phase is shown in Fig. 8. At the beginning
cilium having the same cross-section area (i.e., with radlu:(:jf the simulation { = 0 in the figure), the right cilium
V2a), qnd b.eatmg.m a fluid with viscosity 1/2yqeer The begins at its effective stroke whereas the left one begins at
match is quite satls.,f.acto.ry as we found that the beat fre|'ts recovery stroke. The two cilia synchronize within two
quency of such a cilium is=45.5 Hz (we cannot expect a cycles. The mutual beat frequency=81 Hz, to be com-
better match with such a crude approximation). ’

ith=29 Hz, which is th f f a singl
Gray (1928) reported on experiments with two flagellapared wit 9 Hz, which is the beat frequency of a single

cilium. We found similar fast self-synchronization to occur

beating initially at different frequencies and phases. Wher\lNith different intercilia spacing in the range of 0.3 to 1.5

these flagella were put close enough to each other, theé(iliary lengths
tended to quickly synchronize and beat with the same fre- In most realistic situations involving multicilia configu-

quency gnd n phase. Machin (196:.3) considered the hyp rations, the cilia have identical properties, as the case stud-
thetical interaction between two adjacent flagella, each o

which beating initially in a small amplitude sinusoidal pat- J
tern. Assuming that they continue to beat sinusoidally when "
brought into close proximity and that each one experiences;

r/(_/L/L(

a prefixed induced flow field, he obtained synchronization. dmsec msec Bmsec 10msec
—_ 2 12msec I4msec 16msec 18msec 20msec 22msec
@ T T T T T T T T T
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FIGURE 7 The dependence of the steady-state mutual beat frequency of\L \L \A \A & u

two adjacent cilia, on the distance between them. The vertical axis mea-  ¢0msec 62msec Gdmsec 66msec 68msec 70msec

sures the ratio of the beat frequency of two neighboring cilia to that of a

single cilium after the steady state has been obtained in all cases. THEIGURE 8 The autonomous evolution of synchronization between two
horizontal axis measures the nondimensional distance between the cilizdentical cilia starting at = 0 at opposite phases (the left cilium starts the
The horizontal and the vertical axes are both on a logarithmic scale. Theecovery stroke and the right starts the effective stroke). Synchronization is
vertical error bars represent the estimated errors in the calculated valueachieved within two cycles. The resulting steady-state beat frequency is
and the dashed line is a least-squares fit to the funddien® with A = ~31 Hz. The cilia spacing is 1, the 36 successive snapshots are separated
1.0829 andB = —0.1368. The line is extrapolated back to the intercilia in time by 1 ms, and the units of the axes are nondimensional length. The
spacing of 0.02, corresponding to two touching cilia. Explanation is givenellipse shown at = 0 is the unit circle, appropriately distorted by different

in the text. scaling along the horizontal and the vertical axesec= ms.
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self-synchronization of two adjacent cilia having different ; N \ J - c / C
engines, as shown in Figs. 9 and 10. These cilia are spaced™=__—

- . . =0 2msec 4msec Emsec 8msec 10msec
by one cilium length apart, begin beating completely out of

phase, and differ from each other in their engine parameters
(wesr and w,eg ONe cilium has a set of parameters as de- Q—C Q—C u u \—& \L

scribed in Numerical Methodsy. and w,. of the second famsec Hmaee fomsee omsec 2omsec Zmee
cilium are doubled). If isolated and beating in water, the

beat frequency of the left cilium in Fig. 9 4829 Hz and that \ \ \ )\
of the right cilium is~35 Hz. Their intrinsic beat patterns

are also different. Fig. 10 shows a configuration where the " 2omsec 2Bmsec Somsee Samsec Fmsec

positions of the cilia are switched. In both cases, the two
cilia change their original beat due to the interactionand end _/ )

) ¢/ o (¢ ((

up having two different beat patterns. Furthermore, the  3somsee 38msec 40msec Lmsec Hmsec 6msec
beats shown in Figs. 9 and 10 are also different due to the

asymmetry in the positions of the cilia with respect to the

direction of the effective stroke. Nevertheless, we found that ( ( K ( \ k K \

in both cases the cilia match their (steady state) beat fre-  4msec Somsec Somsec Sdmsee Stmsec S8msec

quency at the value 6£32 Hz, which is the average of their

intrinsic beat frequencies. NN NN \A A L) Q/

The following comment, which relates to all figures that
display two cilia and multicilia configurations in this paper,
is important to avoid misinterpretation. Due to the interciliaFIGURE 10 Two cilia withdifferentengine parameters starting at op-
separation, the relevant range along the horizontal axis igosite phases &t= 0 (the left cilium starts the recovery stroke and the right

cilium starts the effective stroke). The cilia are the same as in Fig. 9, but
with switched positions. The beat frequencies of the left and the right
cilium, when isolated and beating in water, a5 Hz and~29 Hz,
respectively. The beat patterns of the two cilia remain different but they
/7 <  ( ( synchronize their steady-state beat frequency 3 Hz. The cilia spacing
omsec dmsec Gmsec Smsec Tomsec is 1, the 36 snapshots are separated in time by 1 ms, and the units of the
axes are nondimensional length. The ellipse showh=at0 is the unit

- circle, appropriately distorted by different scaling along the horizontal and
CL i § /\ g \ /§ N NI the vertical axesmsec= ms.

12msec 14msec 16msec 18msec 20msec 22msec

GOmsec 62msec G4msec GGmsec 68msec 70msec

\ E ) / larger than the range along the vertical axis. Thus, when
plotting multicilia configurations, we must use different
scales for the axes. This may give the deceiving impression

/ / . that the length of the cilia varies, while in fact it always
LC L( Q < i remains 1 (in nondimensional units). To avoid misinterpre-

24msec 26msec 28msec 30msec 32msec 34msec

36msec 38msec H0msec 42msec Hmsec 46msec tation of lengths in such figures, we add the image of the
unit circle, centered at the anchor of the leftmost cilium.
< < \ \ This unit circle is of course distorted into an appropriate
ellipse and can be used for measuring distances on the plot.
48msec 50msec 32msec Sdmsec S6msec S8msec
\ i \ \ ] / J / / / i : Multicilia configurations
60msec G2msec 64msec G6msec 68msec 70msec In nature, there may be thousandS Of Cl“a beat'ng together,

o _ _ propagating a microorganism through the viscous medium,
F_IGURE 9 Two cilia Wlthd_nfferentengme parameters starting at oppo- oy moving fluid through a tube. One of the striking features
site phases dt= 0 (the left cilium starts the recovery stroke and the right . . . L
cilium starts the effective stroke). Explanation and parameters are detalileg,f Clllary mOt!on is metachronal coordination. As men.'
in the text. The beat frequencies of the left and the right cilium, whentioned above it has been speculated that the metachronism
isolated and beating in water, ax29 Hz and~35 Hz, respectively. The phenomenon may be the result of hydrodynamical coupling.

beat patterns of the two cilia remain different but they synchronize thein\/e attempt to use our model to provide some support for
steady-state beat frequency &B82 Hz. The cilia spacing is 1, the 36 this Conjecture

snapshots are separated in time by 1 ms, and the units of the axes are.l_ ili d fi ili fi ti d to stud
nondimensional length. The ellipse showntat 0 is the unit circle, wo-Cilia and five-Cilia connigurations were usea to study

appropriately distorted by different scaling along the horizontal and thethe effect of cilia interactiorand of increasgd ViSCOSit}’- In
vertical axesmsec= ms. Table 3 we compare the beat frequencies of an isolated
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cilium, of a two-cilia and a five-cilia configuration at three
different viscosities. The ciliary spacing is 0.6. The table *¢
shows significant beat frequency changes in response to.- jus.c
increased viscosity in all cases. We also used the five-cilia
configuration to compare the effect of increased viscosity
with the experimental data of Machemer (1972). The results =3msec
are shown in Fig. 5. Note that the roughly linear dependence
on the logarithm of the viscosity persists. Furthermore, the
resulting line is shifted upward with respect to the line that ="
describes a single cilium and the results tend to approach;—smsec
those reported by Machemer (1972). We did not repeat this
experiment with larger configurations due to the prohibitive
time that such simulations would take.

Figs. 11 and 12 show the beat cycles of a 10- and a r=gmsec
100-cilia configuration, respectively. The cilia spacing is o omse
0.3, the successive snapshots are separated in time by 1 ms,
and the 24 snapshots cover (approximately) a complete beat /0msec
cycle. The displayed snapshots are taken after the cilia have,,,,,...
already reached their steady state, and the time inditator
0 corresponds to the beginning of the fifth cycle rather than
the beginning of simulations, as in the figures that Show two =13msec

t=2msec

t=4msec

t=7msec

t=12msec

cilia configurations. These figures demonstrate the autono- (@@ I
(@@ TR
t=15msec T 1 T T T
N 0 5 10 15 20 25 30
=0 Q 3 1= 2msec M&g AL ALY
I o 1 t=]6msec
\\iéé S\ i ;\ ;\ :\ : < : : ; ; ; : Z \ ( AL AL LA AL LA LAY g&gﬁﬁgﬁgﬁgﬁﬁﬁﬁs&Slﬁﬁiﬁﬁ133&&;:51251&51113‘11
i=Imsec 1=13msec t=17msec
\ ; ; Z t=18msec FEATEE T T
1=2msec \\m 1=14msec & \ e
= 19msec U EAEEE T T -
)2222))))) \Eé;;;;;i\ = 20msee DTN
1=3msec t=15msec
2}}22)) \\ \ t=21msec A A T Y
r=dmsec t=16msec
t=22msec AAAAAHAAAAAAHHAAH A ST T TS S SSIN
1= Smsec M/j = I Tmsec &&\ ) =23maee
0 5 10 15 20 25 30
t=Gmsec QM t=18msec M FIGURE 12 Self-organized imperfect synchronization, resembling a
éijm AN E 5 i 5 S 5 S ; metachronal wave, in a row of 100 cilia. The snapshots are already at
1=7msec 1=19msec steady state: the frame= 0 is the beginning of the fifth cycle of the
simulation. The resulting steady-state beat frequeneyig Hz, and the 24
(=8msec @(@ 1=20msec \\&& snapshots that are separated in time by 1 ms cover a complete beat cycle.
The cilia spacing is 0.3, and the units of the axes are nondimensional
length. The ellipse shown &t= 0 is the unit circle, appropriately distorted
(= Omsec ( § § § § Q § § < r=2msec w\_ by different scaling along the horizontal and the vertical aresec= ms.
1=10msec M t=22msec w
<< ( Q ( ( < ; Q mous occurrence of imperfect synchronization between the
t=1lmsec ; S 1=23msec N ‘ cilia. The result resembles and has many (but not all)
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characteristics of a metachronal wave. In both configura-

FIGURE 11 Self-organized imperfect synchronization, resembling at?ons the steady-state beat frequency-i#2 Hz (beat dura-
metachronal wave, in a row of 10 cilia. The snapshots are already at steadjon 24 ms).

state: the frameé = 0 is the beginning of the fifth cycle of the simulation.
The resulting steady-state beat frequency#2 Hz, and the 24 snapshots
that are separated in time by 1 ms cover a complete beat cycle. The cili
spacing is 0.3, and the units of the axes are nondimensional length. Th@

The effective stroke in the 10-cilia configuration takes
lace roughly front = 0 tot = 5 ms. To notice the phase
gs between the cilia, note that tat= 5 ms the leftmost

ellipse shown at = 0 is the unit circle, appropriately distorted by different Cililum is still at the end of its effective stroke, whereas the

scaling along the horizontal and the vertical axesec= ms.

other nine cilia have already started their recovery stroke.
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The cilia have different beat patterns, according to theidifferent: the cilia in the line are more curved during the
position in the line. effective stroke and less curved during the recovery stroke.
The 100 cilia beat in an approximately antiplectic meta-The angular spread of the cilia in the infinite line is smaller

chronal wave, propagating from right to left (the direction of than that of an isolated cilium. The upper panel of Fig. 13
the effective stroke is from left to right). This type of displays a three-dimensional view of a semi-infinite array of
antiplectic metachronism may occur with the ciliadr- 10 rows representing an infinite lines of cilia. The lower
ameciumunder some conditions [see, for example, Ma-panel shows the side view of this configuration at the same
chemer (1972)]. We point out that although Sleigh (1962)time. The ciliary spacing is 1 along the lines and along the
originally suggested that the cilia ®farameciunbeat in an  rows. The resulting beat frequency 4642 Hz, and some
antiplectic metachronal pattern, later work showed that itevidence for emerging phase lags can be observed. Proba-
was in fact dexioplectic [see Tamm (1972)]. To observe thebly, more rows are required to obtain a wavelike pattern
phase lags between the cilia, note that-at0 the rightmost  formed by the cilia tips, but we did not simulate such
cilium already begins its effective stroke, whereas the otheconfigurations due to their prohibitive computational cost.
cilia are still at the end of the previous recovery stroke.
Phase lags persist in the subsequent snapshots (etgs, at
1-4 ms). A roughly wavelike pattern, formed by the tips of DISCUSSION
the cilia, propagating from the right to the left, can be seenwe have presented a general modeling framework for com-
in the snapshots (e.g., ait= 6 ms,t = 9 ms,t = 15 ms).  puting the forces that produce an observed ciliary beat
Phase lags during the period of the “slow straightening baclpattern, and for fitting it into a simple plausible functional
to position” of the cilia toward the end of the cycle still form to generate a model ciliary engine. Our engine is what
exist, although they are less easy to observe than during thge call a configuration-dependent engine, which is con-
beginning of the cycle (mainly due to the scaling in thetrolled by two geometric switches activated at the end of the
figure). effective and the recovery strokes. The modeling assump-
tion used here is that the engine does not change its prop-
erties in response to being slowed down by external load. A

Two-dimensional arrays of cilia beating in the
same plane

In nature large numbers of cilia are arranged in almost
parallel rows, such that the motion of adjacent cilia is
synchronized along one direction (often perpendicular to the
direction of the effective stroke), but out of phase along the
other. To model this setup we investigated two-dimensional
arrays of cilia, where the cilia beat out of phase in the q
direction of thex axis and synchronously in the direction of
the z axis. In such configurations each cilium is influenced
by neighbors in the same row as well as by neighbors in the 4 T T n . T
same line. If the lines of the synchronized cilia are infinite, , - |. i
and the cilia along these lines are equally spaced, the beat
remains planar and we can still use our two-dimensional 2 7
model. Liron and Mochon (1976) and later Liron (1996) , |
proposed an efficient approach to computing the flow due to
infinite lines of stokeslets in three-dimensional configura- 2 7
tions. The implementation to our case is straightforward., ; |
Since the cilia along the line perpendicular to the plane of
beating are in phase, we need only to change the singular
kernels in the integral equation (Eq. 4) to account for theg 5 / i
velocity due to identical stokeslets distributed at constant
intervals on the line, and placed at the same height above the® 0 5 4 o 8 10
surface. The full expressions are given in detail in Liron
(1996). FIGURE 13 A perspective viewupper panél and a side viewl¢wer

Fig. 4d displays the sideview of the beat cycle of a singlepane) of a semi-infinite array of cilia consisting of 10 rows, each one
infinite line of synchronized cilia, to be compared with the representing an infinite line of synchronized cilia. The snapshot is already
beat cycle of a single cilium in panal The beat duration of &t Steady state and the beat frequency 4 Hz. Small phase lags between
the infinite line of cilia is 30 ms (frequency is 33.3 Hz), thg cilia can be observed._The spacmgmthe rows gnd in the Imes is1. The

. ; . . - ' units of the axes are nondimensional length. The ellipse shown in the lower

whereas the duration of a single two-dimensional cilium iSpanel is the unit circle, appropriately distorted by different scaling along
34 ms (frequency is 29.4 Hz). The beat pattern is alsahe horizontal and the vertical axes.
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different modeling approach which would perhaps yield
even a more realistic, speed-dependent engine, would in-
clude the property that dyneins generate more forces when
slowed down by a load. This is an important direction for 2.
future studies.

Our model gives only a phenomenological description
based on the available data. We were able to obtain surpris-
ingly good fits to many quantitative features of the ciliary
beat without getting into the details of the internal structure
of the cilia. Introduction of realistic dynein-microtubule
interaction kinetics and signaling control systems into the
model is another important direction in which our modeling
framework should be extended in the future.

The equations we use fully account for the viscous inter-
actions between the cilia and the fluid in which they are
immersed and the boundary effects. This markedly im-3.
proves the accuracy and consistency of the model as com-
pared to earlier studies. The results obtained for one cilium
closely resemble the responses to changed viscosity and to
externally imposed flow observed, e.g., by Sleigh (1962,
1968); Gray (1928); Okuno and Hiramoto (1976); Eshel and
Gibbons (1989) and others. This demonstrates that our
model engine together with the GL hydrodynamical equa-
tions capture the essential features of the problem.

With multicilia configurations, we obtained self-synchro-
nization between two adjacent cilia. Also, the response of a
single cilium to external flow fits experimental results
(Gray, 1928; Okuno and Hiramoto, 1976). The results we
obtained from rows of cilia and semi-infinite two-dimen-
sional arrays of cilia indicate that metachronal-like patterns
can evolve autonomously due to the hydrodynamic interac-
tion between the cilia. This provides support for the con-

is now underway to obtain an engine and switching
paradigm that would allow metachronism in any direc-
tion to evolve autonomously.

Our reconstruction of forces that led to the proposed
model engine was based on observed beats of a suppos-
edly single cilium. However, in most experiments, in-
cluding the one whose results we used, the cilia are not
isolated. Therefore, the observed beats are already the
overall result of the ciliary interactions. Taking this into
account while building the model for the internal engine
would require more sophisticated mathematical tech-
nigues. Alternatively, we plan to apply our method to
data extracted from beats of isolated cilia. Such data will
hopefully be available in the near future (Z. Priel, per-
sonal communication).

In nature, cilia beat in three-dimensional patterns. To
reach efficient functioning, the cilia are packed densely,
and should be able to move freely throughout the beat
phase. This is achieved by having the cilia return to their
“start position” out of the plane of the effective stroke,
thus creating 3-d motions, and by staggering the beat of
adjacent cilia creating a metachronal wave. Gueron and
Liron (1993) developed the necessary equations for
modeling 3-d ciliary motion. These equations enable the
propagation in time of the curvature and the torsion
along a 3-d curve, given its velocity distribution. How-
ever, modeling the 3-d problem in a realistic multicilia
configuration is still a formidable task. Applying our
technigues and reconstructing a ciliary engine that would
give a 3-d motion and possible diaplectic metachronism
is a future goal.

jecture that metachronism can, at least partially, be exappPENDIX

plained as the result of hydrodynamic coupling. Because the

hydrodynamic treatment used here fully accounts for thdNumerical methods

viscous and boundary effects, and is suitable for numericator the convenience of the reader, we provide here all the details of the
computation, a number of problems that have hitherto noinvolved computations required for the simulations. By using this descrip-
been approachable are now ready to be investigated: tion the results reported in the paper can be reproduced.

We useN + 1 discretization points along the cilium, with discretization

1. The present model demonstrates that an antiplectic metaterval ds = 1/N. Equations 2 are integral equations with the unknowns
chronal wave can occur as the result of hydrodynamicpn and¢r. We solve these equations by an iterative method and use the
interactions between neighboring cilia. Symplectic, dex-StoPpPing criterion

ioplectic, and laevoplectic metachronism also occur in
nature. Such behavior could result, in principle, from an
initial deformation caused by viscous interaction with

[ — ¥l <e and [pY — . <e.

We usee = 10 in our calculations.
After the drag force is computed, the values of the shear férgs|[t),

adjac_ent Ci“"f‘a which then trigger_s the dynei_n'micrOtU' Fn(s )] can be obtained from Egs. 6. Equations 6, 13, and 15 yield a linear
bule interaction to occur in a particular direction. Work system of the formAx = b of 2N + 2 unknowns, where
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-1 0 1 0 0 0 0 qg—a, O 0 0 --- 0
0o -1 0 1 0 0 0 0 a—a; O 0 0
0 0 -1 0 1 0 0 0 0 w—a O 0
0 0 0 0 0 .1 0 0 0 0 0 )
A=1 0 0 0 0 ---0-1 1 0 0o 0 -.- o (A
0 w—a O 0 0 0-1 0 1 0 0 0
0 0 a;—a, O 0 0 0 -1 0 1 0 0
0 0 0 a-a O 0 0 0 -1 0 1 .- 0
L 0 0 0 0 0 0 0 0 0 0 0 1
and dS C:
— 5 '~ '0Onc (041 — @—1)
XT = [FTO! FTll FTza LR IFTN|FN01 FNll FNza LR 1FNN1]1 2 C
(A2) ds
+ E ° (gT\ﬂ - gTi—1)’ (A7)

bT = [0, Zde)TU Zd&sz’ ey q0, 2d&1)N1’ Zd&i)Nzl P O]
HereFr, Fyy &1, ¢n, (i = 0 ... N) represent values at the discretization
points.

The solution of this system gives the values Fof and F at the
discretization points. The values of the active shear force at these points are
approximated to orde®(ds®) by

Finally, a(s, t) is propagated in time by solving Eqg. 10, which is a

nonlinear PDE forax with a fourth-order space derivative. We solve it by
the Crank-Nicolson method, that is, calculating the value: af the time

et (dt/2), and repeating the above process until stopping criterion is
satisfied. The discretization reduces Eqg. 10 to a linear systerm b with

N + 1 equations, where:

S=F, —E- (ip1 — 204 + a|—l)’ -1 1 0 0 0 0 0
| ds’ (A3) -1 3 -3 1 0 0 0
i=0,1,....N. L, L, D, U, Uy, 0 0
. 0 L23 L:|_3 D3 U13 U23 et O
If the shape of the ciliuna(s, t) is given at timet, and the active shear A= . I .
force s, 1) is knovyn, Fn(s t) can be obtgined from Eq. 11, and then O 0 |_2N72 |_1N72 Dy_s Ulez Uszz
F+(s, t) can be obtained from Eg. 9. Equation 6 gives the value of the drag 0 0 0 0 1 _9 1
force [p(s 1), Pn(s 1)]. Using these values in Eq. 4 gives the value of
g+(s, t) andgy(s, t). We perform this process iteratively until the stopping L O 0 0 0 0 -1 1 ]
criteria are satisfied. Equation 9 is a second-order ordinary equatiés-for (A8)
The above discretization reduces it to a linear system of the fotrs b
with N + 1 equations, where X' = [, o1, 0z, @3, . . g, -1, O,
[ -1 1 0 0 0] . SL2
1 -2+D, 1 0 0 b™=10,—ds -+ (S~ %),
a| O 1 -2+D; 1 0
I . : RHS,, RHS,, ..., RHS,_,,0,0], (A9)
0 0 1 —2+Dy, 1 _
0 0 0 0 1 and, fori = 3,4, ... ,N— 2.
(A4) E
L2i = U2i = ?, (AlO)
XT = [FT[)Y FT11 Fsz LR !FTNfll FTN]! (A5) S)
E ds C
b"=[0, RHS,RHS,, ..., RHS_;, 0], L, = _4.%_7. 1+ N (Fr.,— Fr_) +d$-Fy
i S)L 4 CT i+1 i—1 i
and, fori=1...N—1,
1Cy E ( Yo ds CN
1 G 10 oz Wiy T i -5 '~ "On,
D= 4" (@ — o) (A6) Aast 2 G
D=6 —2.dg-F, +2.95. G
1 C i <2 Ti =T
RHS = 4<1 + C:,) *(Fn, — Py s (i — o) st dt S
Cn

+ F e (eig —

Zai + QO ,1)

2 B
e s

(o1 — ai—l)z

(A11)
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E, d< Cy Ermentrout, G. B. 1985. The behavior of rings of coupled oscillators.
Uy, = _4.7L2 + T . <1 + C) . (FT.+1 — FT.,l) + dSzFT. J. Math. Biol.23:55-74.
S T Ermentrout, G. B., and N. Kopell. 1984. Frequency plateaus in a chain of
weakly coupled oscillators SIAM. J. Math. Anal15:215-237.
1Cy E ds C
) e (a- — o )2 ) g Eshel, D., and I. R. Gibbons. 1989. External mechanical control of the
4 C; SL2 V1 -1 2 C; W timing of bend initiation in sea urchin sperm flagell&ell Motil.
Cytoskeleton14:416—-423.
d¢ CNwL2 Gheber, L., and Z. Priel. 1989. Synchronization between beating cilia.
RHS = 2°E . T a;(t) Biophys. J55:183-191.
Gray, J. 1928. Ciliary Movement. Cambridge University Press, Cambridge.
d< Cy Gray, J., and G. Hancock. 1955. The propulsion of sea-urchin spermatozoa.

J. Exp. Biol.32:802-814.

Gueron, S., K. Levit-Gurevich, N. Liron, and J. J. Blum. 1997. Cilia
internal mechanism and metachronal coordination as the result of hy-
drodynamical couplingProc. Natl. Acad. Sci. USA4:6001—-6006.

+ ? (gNul — On 1) — ds* (S+1 —25+ Sfl)! Gueron, S., and N. Liron. 1992. Ciliary motion modeling, and dynamic
multicilia interactions Biophys. J.63:1045-1058.

After the values ofx(s, t) anda[s, t + (dt/2)] are computed, we obtain the Gueron, S., and N. Liron. 1993. Simulations of three-dimensional ciliary

value ofa(s, t + dt) by beats and cilia interaction&iophys. J.65:499-507.

Higdon, J. J. L. 1979a. A hydrodynamic analysis of flagellar propulsion.
dt J. Fluid Mech.90:685-711.
a(s,t+dt) =~ 2-als t+ 57 a(s, t) + O(dt). Higdon, J. J. L. 1979b. The generation of feeding currents by flagellar
motion. J. Fluid Mech.94:305-330.

Finally, note that for clarity the calculation procedure is displayed as a flowHigdon, J. J. L. 1979c. The hydrodynamics of flagellar propulsion: helical
chart in Fig. 1. Similarly to the result reported by Hines and Blum (1978) Waves.J. Fluid Mech.94:331-351.

and by Gueron and Liron (1992) we found that the stopping criterion isHines, M., and J. J. Blum. 1978. Bend propagation in flagella. I. Derivation
satisfied already after five iterations. of equations of motion and their simulatioBiophys. J.23:41-57.

The complexity of the simulation algorithm &(P?N?) whereP isthe ~ Hines, M., and J. J. Blum. 1979. Bend propagation in flagella. I. Incor-
number of the simulated cilia arld is the number of discretization points ~ Poration of dynein cross-bridge kinetics into the equations of motion.
along each cilium. Hence, simulations of large multicilia configurations are  BioPhys. J25:421-442.

a heavy computational task. Although modern computer technology enJohnson, R. E., and C. J. Brokaw. 1979. Flagellar hydrodynamics: a
ables us to run simulations of large multicilia arrays, practical limitations ~comparison between resistive-force theory and slender-body theory.
still exist. For example, the simulation of a 100-cilia configuration for 5 Biophys. J25:113-127.
cycles (1200 time steps) takes400 CPU hours. All calculations and  Lighthill, J. L. 1975. Mathematical Biofluiddynamics. Regional Confer-
simulations reported in with work were performed on SUN SPARC 10 ©nce Series in Applied Mathematics. SIAM, Philadelphia. 45-62.
workstation. Lighthill, J. L. 1976. Flagellar hydrodynamicSIAM Rev.18:161-230.

Liron, N. 1996. Stokes flow due to infinite arrays of stokeslets in three

dimensionsJ. Eng. Math.30:267—-297.
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